Microbial Eukaryotes: Extending Observations North
نویسنده
چکیده
Free-living microbial eukaryotes are an enigmatic group of organisms. Many have been discovered through traditional cultivation and microscopic observation, with continued observations leading to the acknowledgment that many small eukaryotic species are potentially dispersed at a global level (Finlay, 2002). While cell size could affect global distribution, habitat selection could allow for abundances of organisms to show environmental preferences, making widespread investigations of microbial eukaryotes through multiple analysis methods valuable for understanding these unseen species. In recent years, investigations into the diversity of microbial eukaryotes have revealed a massive diversity that had been previously overlooked. While knowledge has been gained in more accessible environments, extreme environments that may show drastic habitat preference for microbial eukaryotes have been less sampled. Within pelagic environments, mixing was thought to lead to a more even distribution of organisms, however, the empirical evidence of habitat selection has often led to the concept of moderate endemicity where only a few species are cosmopolitan, and others are endemic (Foissner, 2006). In polar environments, water masses have been shown to separate bacteria into biomes (Galand et al., 2010) and the Arctic and Southern Ocean have been shown to be distinguishable from each other (Ghiglione et al., 2012), vertical profile of snow, multi-year ice, and underlying water to 170 m below sea level to be examined using 18S rDNA cloning and sequencing, allowing for thorough investigation into the microbial eukaryote community. Additionally, the study comes at the end of the polar night, where phototrophic species are drastically reduced. The study found that seawater held by far the largest microbial eukaryote diversity, followed by sea ice and distantly by snow. The diversity of operational taxonomic units (OTUs) in the deep ice in contact with the upper water was extremely similar, yet the taxon abundances were dissimilar, with shallow water holding more Fungi than the deepest ice. Diversity increased through the ice, with the most recent years of shallow ice containing lower diversity than deeper ice, suggesting that inputs are different between layers, or organisms are showing adaptation to the habitat over time. Detailed analysis of the sequences show that some species could be interpreted as originating in the water column and entering the deep overlying ice, likely during freezing, suggesting that the deep ice more closely resembles the community in the shallow waters. Snow had low diversity and the sequences detected in it are suggestive of potential contaminants, including humans and temperate plants. As such, eukaryotic sequences, such as those associated with pollen from Pinus species, may represent dispersed, but inactive eukaryotes unaffected by habitat selection. Activity is inferred in this study from the lack of phototrophs detected. Typically, abundant diatom species are observed in ice and water samples, however, at the end of the polar night, the light starved community had decreased to lower levels. Many of the detected organisms were related to known mixotrophs and diatom predators were detected, suggesting that the primary production within the community was low and impacted by grazing (Bachy suggesting physical factors exert large controls that overcome dispersal and allow habitat specificity of small cells. In polar environments, water, sea ice, and snow represent biomes much like polar water masses, that are physically interconnected yet separate, with some organisms from water freezing into and surviving within sea ice and snow being physically connected but potentially seeded with organisms from the atmosphere. Eukaryotes examined in sea ice have mostly been phototrophic species, with diatoms the most frequently examined group (Staley and Gosink, 1999) although other groups have been detected (Brown and Bowman, 2001). The idea of habitat selection of microbial eukaryotes has been hampered in this environment through methodological differences in approaches, with microscopic investigations showing good overlap of the ice and water biomes, but molecular analyses showing habitat specificity (Mock and Thomas, 2005). As such, polar environments hold a key to understanding the global footprint of microbial eukaryotes and their potential barriers to dispersion. The sea ice biome is also recognized to be active (Wheeler et al., 1996) and subject to change (Kirchman et al., 2009; MontesHugo et al., 2009), making knowledge about the current polar water, sea ice, and snow diversity valuable for baseline values. Recently a study by Bachy et al. (2011) has extended the knowledge on microbial eukaryotes to the region near the North Pole. This first investigation into the Arctic offshore environment allows a glimpse at a complex ecosystem that includes multiple biomes of snow, sea ice, and water. The study took place on a large floe of ice that freely drifted during the field season, and samples were taken at the end of the polar night, when the ice had drifted south of the exact North Pole. The permanent ice cover of this environment allowed for a Microbial eukaryotes: extending observations North
منابع مشابه
Microbial Eukaryotes in an Arctic Under-Ice Spring Bloom North of Svalbard
Microbial eukaryotes can play prominent roles in the Arctic marine ecosystem, but their diversity and variability is not well known in the ice-covered ecosystems. We determined the community composition of microbial eukaryotes in an Arctic under-ice spring bloom north of Svalbard using metabarcoding of DNA and RNA from the hypervariable V4 region of 18S nrDNA. At the two stations studied, the p...
متن کاملDefining DNA-based operational taxonomic units for microbial-eukaryote ecology.
DNA sequence information has increasingly been used in ecological research on microbial eukaryotes. Sequence-based approaches have included studies of the total diversity of selected ecosystems, studies of the autecology of ecologically relevant species, and identification and enumeration of species of interest for human health. It is still uncommon, however, to delineate protistan species base...
متن کاملReducing Emergency Department Visits for Acute Gastrointestinal Illnesses in North Carolina (USA) by Extending Community Water Service
BACKGROUND Previous analyses have suggested that unregulated private drinking water wells carry a higher risk of exposure to microbial contamination than regulated community water systems. In North Carolina, ~35% of the state's population relies on private wells, but the health impact associated with widespread reliance on such unregulated drinking water sources is unknown. OBJECTIVES We esti...
متن کاملEukaryotic Microbiomes of Membrane-Attached Biofilms in Membrane Bioreactors Analyzed by High-Throughput Sequencing and Microscopic Observations
Limited information is currently available on the contribution of eukaryotes to the reactor performance of membrane bioreactors (MBRs). Using high-throughput Illumina sequencing of 18S rRNA genes and microscopic observations, we investigated eukaryotic microbiomes in membrane-attached biofilms in MBRs treating piggery wastewater. Protozoa preying on bacteria were frequently detected under stabl...
متن کاملLateral gene transfers and the evolution of eukaryotes: theories and data.
Vertical transmission of heritable material, a cornerstone of the Darwinian theory of evolution, is inadequate to describe the evolution of eukaryotes, particularly microbial eukaryotes. This is because eukaryotic cells and eukaryotic genomes are chimeric, having evolved through a combination of vertical (parent to offspring) and lateral (trans-species) transmission. Observations on widespread ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013